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Abstract

We investigate the task of efficiently training classifiers
to build a robust place recognition system. We advocate an
approach which involves densely capturing the facades of
buildings and landmarks with video recordings to greedily
accumulate as much visual information as possible. Our
contributions include (1) a preprocessing step to effectively
exploit the temporal continuity intrinsic in the video se-
quences to dramatically increase training efficiency, (2)
training sparse classifiers discriminatively with the result-
ing data using the AdaBoost principle for place recogni-
tion, and (3) methods to speed up recognition using scaled
kd-trees and to perform geometric validation on the results.

Compared to straightforwardly applying scene recogni-
tion methods, our method not only allows a much faster
training phase, the resulting classifiers are also more accu-
rate. The sparsity of the classifiers also ensures good poten-
tial for recognition at high frame rates. We show extensive
experimental results to validate our claims.

1. Introduction

Our objective is place recognition i.e. given an input im-
age we wish to determine the identity of places by recogniz-
ing their facades. By “places” we mean landmarks or build-
ings with prominent facades. Place recognition is instru-
mental in Mobile Augmented Reality (MAR) systems [5],
where proponents envision an application that allows users
to point their camera phone (or other mobile devices with a
camera) at a place to access more information about it.

An image-based system can recognize a place in an im-
age only if the given facade was observed previously un-
der roughly the same conditions (e.g. viewpoint, lighting).
Consequently data collection becomes complicated, espe-
cially for large buildings or landmarks: Capturing from afar
to fit a building in an image causes important visual fea-
tures to disappear, so naturally we prefer close range im-
ages. However, close distances allow a large number of
distinct viewing positions and viewpoints, and hence, dis-

tinct (sub)facades of the building1. The data collector is
presented with the dilemma of choosing among them, es-
pecially if each facade has the equal probability of being
presented as a query image.

To alleviate this problem we propose to capture facades
with video recordings. Instead of snapping just a few im-
ages, the collector pans smoothly to capture a place in video
e.g. in a pure planar motion. For a given viewing position, a
set of video recordings can acquire much more information
about a place than a set of images. Fig. 1 illustrates the idea.

(a) Coarsely sampled viewpoints of a viewing position.

(b) Video frames captured from the same position include all viewpoints.

Figure 1. Collecting images of facades of a large building.

From a cursory glance distinguishing between still im-
ages and video seems vacuous— after all one can always
break up a video sequence into still images for individual
treatment. However we maintain such a distinction for two
reasons: (1) Panning in video dramatically simplifies data
collection, since given a viewing position the data collector

1In this work, “viewing position” differs from “viewpoint. The former
implies an x-y coordinate on the surface of the earth, while the latter refers
to the direction towards which to observe a place given a viewing position.

1

978-1-4244-2340-8/08/$25.00 ©2008 IEEE



does not need to choose viewpoints2. One should also be
able to appreciate not needing to manually snap images con-
tinuously during collection. (2) More crucially, the deluge
of visual information from video sequences presents the sig-
nificant challenge of effectively processing them. Straight-
forwardly breaking up the video sequences into separate
frames and applying scene or object category recognition
techniques [2, 7, 9, 10], which traditionally dealt with in-
dividual still images, will not be efficient. However, since
temporal continuity (which cannot be assumed to exist in a
raw collection of images) is intrinsically preserved in video
sequences, it can be exploited for efficient processing.

1.1. Contributions

We propose a solution, described by the following steps,
to process a video sequence database captured in the manner
of Fig. 1(b) to construct a robust place recognition system:

1. A method to filter and condense the visual information
in the video sequences into a more compact form (see
§2) by exploiting temporal continuity.

2. Train sparse and discriminative classifiers efficiently
from the results of Step 1 using the AdaBoost algo-
rithm (see §3). Using the results of Step 1 instead of
treating video frames individually allows us to avoid
being overwhelmed with the vast amount of raw visual
information from the input video sequences (see §3.3).

3. Speeding up recognition with fast nearest neighbour
searches using a modified kd-tree structure (see §4.1),
and performing geometric validation on the recogni-
tion results to increase recognition accuracy (see §4.2).

Note that in our system, during the testing phase queries are
accepted and processed in the form of still images.

1.2. Related work

Significant progress has been made in the area of scene
or object category recognition [2, 13, 14, 7, 9, 10]. Though
we emphasize that place recognition is slightly different
since we aim to recognize specific places rather than scene
categories, ideas from [2, 13, 14, 7, 9, 10] can certainly
be applied. Generally, most of the methods involve build-
ing visual vocabularies from keypoint descriptors and learn-
ing generative models from quantized descriptors. How-
ever, for MAR on mobile devices we cannot afford to load
large data structures like visual vocabularies, quantize de-
scriptors and then perform recognition. Hence we favour an
approach without visual vocabularies and quantization, and
which is also discriminative such as [10] which promises
faster recognition than generative methods.

2One can also regard this as a view sampling issue, whereby our video
capture methodology advocates a very dense sampling.

A work similar in objective is [3], where the “Informa-
tive Features Approach” is used to select informative SIFT
features [8], via local entropy estimations, that describes a
set of places. The selected features are used for recognition
in a MAP decision making process. Our work differs by
using a very different idea for feature selection, i.e. the Ad-
aBoost algorithm which directly selects features based on
their classification potential. We believe our method is sim-
pler and results in sparser and faster classifiers. Moreover,
we also tackle the issue of building a practical large scale
MAR system (see §5), whereas [3] tested on small datasets
only (e.g. the ZuBuD [11] with only 5 images per building).

Our video processing framework is similar in spirit
with [13, 14], where the basic idea is to summarize the local
features which exist throughout a video sequence. However
the final objectives are starkly different: In [13, 14], the goal
is to build an index for the visual features in a movie to fa-
cilitate the searching of objects of interest i.e. the query is a
subimage of a movie frame containing an object. Our aim is
to train classifiers from the condensed visual features, and
the query is an unseen before image. Moreover the different
nature of the training video sequences (feature-length films
in [13, 14] versus video recordings of places) warrants dif-
ferent video processing methods (more details in §2).

A previous research towards densely capturing facades
for place recognition is [6], where “route panoramas” are
obtained by line scanning a scene with a camera mounted
on a vehicle as it traverses a street in a city. Given a query
image, the camera position is recovered (hence, the place is
recognized) by finding it’s epipole in the route panorama.
This can be costly since a RANSAC-like procedure is re-
quired for each query [6]. In contrast our method only re-
quires matching a small set of local features (see §3 and §4).

In [15] video sequences are used as inputs for querying
in place recognition, where video motion coders from mo-
bile phones are exploited to aid in tracking local features
across the video frames. The aim is to quickly identify
seen-before and newly emerged keypoints so as to speed-up
feature extraction in the querying phase. Our method also
involves tracking keypoints, but our focus is on the training
phase, i.e. to train a place recognition system using video
sequences as samples, and hence is complementary to [15].

2. Processing Videos of Places

A video database where each video is labeled according
to place identity is first collected. The videos are captured in
the manner of Fig. 1(b), and a place can have several videos
depending on its physical size. Given a video sequence,
based on the SIFT [8] framework we detect scale invariant
keypoints in every frame and assign descriptors to them.

Even in one sequence, in total a massive number of
keypoints are obtained, and we aim to reduce the number
of keypoints to consider for classifier training. Since our



videos are recorded in a smooth panning motion, many of
the keypoints in a frame will be re-occurances from the pre-
vious frames (but in slightly differing views). We can track
keypoints across the sequence to identify the overlaps.

2.1. Finding keypoint overlaps

Let {(xi,pi)} and {(yj ,qj)}, 1 ≤ i ≤ m and 1 ≤
j ≤ n, be the sets of keypoints detected in two successive
frames, with xi and yj denoting the keypoint positions and
pi and qj their descriptors. Since the images represent two
views of the same scene, a homography H exists between
corresponding points:

Hỹ × x̃ = 0 ,

where ỹ and x̃ indicate the homogenous coordinates of y
and x. Our aim is to find the best homography H∗.

To achieve this, we first compute a pairwise similarity
matrix using the Euclidean distance between pi and qj . All
possible corresponding keypoints between the two frames
are identified by considering that a pair of keypoints are
matching if the distance of their SIFT descriptors are be-
low a pre-defined threshold. H∗ is determined as the H that
allows the most number of corresponding keypoints to over-
lap (i.e. the distance between x̃ and Hỹ is below a certain
threshold). We perform a RANSAC procedure to estimate
H∗. For more details, refer to [4].

The process is repeated successively on each frame pair,
and overlapping keypoints are accumulated into the same
track (keypoints without matches are simply discarded).
Fig. 2 illustrates the idea, and Fig. 3 shows an example re-
sult. As an indication of effectiveness, a typical 25-frame
video sequence in our database contains a total of about
30,000 SIFT keypoints. Among these only about 4,000 are
determined as unique by the method. In fact this can also be
considered a filtering process, where only keypoints consis-
tently detectable in multiple views are kept.

Step        : Detect keypoints from video sequence and compute descriptors
Frame (n) Frame (n+1) Frame (n+2)

. . .

2Step        : Compute homography and similarity to track keypoints across frames

4

5

1

3Step        : Discard unmatched keypoints

. . .

Step        : Initialize distribution for descriptors in new tracks
Step        : Update distribution for descriptors in an existing track

. . . . . .

5 5 5

5

3 4 44

For matched 
keypoints

Figure 2. Finding keypoint overlaps using temporal continuity.

Figure 3. Overlapping keypoints are re-occurances of the same lo-
cal feature. In this pair, crosses are detected keypoints, and those
with bounding circles indicate that an overlap is found.

Our aim is similar to [13], where each keypoint is tracked
individually since there could be multiple moving objects of
interest in their video. Our idea is more suited here, since
we wish to separate the static background (the facade of
interest) from dynamic occlusions (the keypoints of which
are discarded for not obeying the global homography).

2.2. Estimating descriptor distributions

We derive a parsimonious representation for the descrip-
tors in a particular track by representing them with a Gaus-
sian distribution. A distribution is more expressive than a
simple average, as was done in [13]. We use a diagonal in-
stead of a full covariance since a compact representation is
desired. The distributions are updated incrementally so we
do not have to maintain a large number of descriptors. For
a particular track, at time t let µt and Σt be the mean and
covariance of its distribution of m descriptors. At time t+1,
if a new descriptor pt+1 is added, µt and Σt are updated as

µt+1 = m
m+1µt + 1

m+1pt+1,

Σt+1 = m
m+1Σt + m

(m+1)2
(µt − pt+1)(µt − pt+1)T .

The off-diagonal elements of Σt+1 are then zeroed. The
first two descriptors of the track are used to initialize the
mean and covariance matrix. For d-dimensional descrip-
tors, at any point in time only 2d unique values, correspond-
ing to the nonzero elements of µ and Σ, are kept for each
track (as opposed to d(d+3)/2 for the full covariance case).

2.3. Preserving geometric relations

The visual features on a facade do not exist indepen-
dently of each other, and must appear on a fixed configu-
ration. In this work, we make the assumption that the ac-
cumulated keypoints from a video sequence lie on a com-
mon 2D surface (the facade). Given two frames with a set
of overlapping keypoints, the translation between the two
frames is approximated by computing the average differ-
ence between the keypoint coordinates. By keeping track of
the successive translations in a sequence, we can maintain
a rough configuration of detected keypoints relative to the
first frame. This information can be used later to perform
geometric validation on recognition results (see §4.2).



3. Boosting Descriptor Distributions

After applying the steps outlined in §2, each video se-
quence in the database is reduced to a set of descriptor dis-
tributions. Each set also inherits the class (place) label of its
video sequence. We train discriminative classifiers for place
recognition by boosting the descriptor distributions. Via the
AdaBoost algorithm, we select a small subset of descriptor
distributions which are unique and informative. The result-
ing classifiers are sparse and can be evaluated quickly.

3.1. Boosting local features for place recognition

The AdaBoost algorithm for generic object recognition
was introduced in [10]. Deriving from [10] for place recog-
nition, AdaBoost aims to train classifiers of the form

Hc(I) =
∑T

t=1α
c
t hc

t(I) , (1)

where Hc(I) gives the confidence of input image I contain-
ing the c-th class. Hc(I) is obtained by boosting a series of
weak classifiers hc

t(I), t = 1, . . . , T , each with weight αc
t ,

to become a strong classifier. A weak classifier is defined as

hc
t(I) =

{
1 if min d(ec

t ,vj) ≤ θc
t , ∀ j = 1, . . . , J

0 otherwise
(2)

where ec
t is the defining local feature of hc

t , and vj is one of
the J local features of I. Function d(·, ·) is a dissimilarity
measure used to compare ec

t and vj with threshold θc
t , and

the exact form of d(·, ·) is dependent on the forms of ec
t

and vj . More intuitively, hc
t(I) checks whether a feature

sufficiently close to ec
t exists in I. Given a pre-determined

T by the user, the AdaBoost algorithm finds the optimal ec
t ,

θc
t and αc

t successively for t = 1, . . . , T .

3.2. AdaBoost with descriptor distributions

Before invoking AdaBoost to obtain the hc
t ’s, a minimum

dissimilarity matrix K must be computed for the c-th class.
In the current context, where our local features are the de-
scriptor distributions, each entry Kmn contains the value

Kmn = DKL(fn, em) . (3)

DKL signifies the Kullback-Leibler Divergence (KLD),
while em is the m-th descriptor distribution from the c-th
place. Put more crudely, we lump all descriptor distribu-
tions from the c-th class together, and em is one of them.

The term fn indicates the nearest neighbour of em in the
n-th video sequence (both c and c̄) in the following sense:

fn = argminfi
DKL(fi, em) , fi ∈ Fn . (4)

Fn is the set of descriptor distributions from the n-th video
sequence. For Gaussians, the KLD has the closed form

DKL(fi, em) = 0.5[ log |Σm||Σi|−1 + tr(Σ−1
m Σi)

+(µm − µi)T Σ−1
m (µm − µi) − d ], (5)

where {µm,Σm} and {µi,Σi} respectively characterize
the distribution of em and fi. Given K, we can apply the
AdaBoost algorithm [10] to choose among the em’s to form
the set of T discriminative descriptor distributions ec

t . The
details of the algorithm is beyond the scope of this paper,
and the interested reader is referred to [10].

In our application, place recognition is eventually per-
formed on still images. Consequently we use the Maha-
lanobis distance for d(·, ·) in Eq. (2):

d(ec
t ,vj) = (vj − µc

t)
T (Σc

t)
−1(vj − µc

t) , (6)

where {µc
t ,Σ

c
t} define the distribution of ec

t , and vj is one
of the J keypoint descriptors (vectors) in the query image.
The “Weak Hypothesis Finder” routine [10] is straightfor-
wardly modified to retain only the third term of Eq. (5) to
compute the threshold θc

t .
How we compute K and define the weak classifiers con-

stitute the major differences between our work and [10],
where em and fn are simply descriptors (vectors), and the
Euclidean distance is used as a dissimilarity measure, with
Kmn = ‖em − fn‖, and d(ec

t ,vj) = ‖ec
t − vj‖.

3.3. Why exploiting temporal continuity is useful

Given a completed K ∈ R
M×N , finding a single vc

t with
the Weak Hypothesis Finder routine involves a complexity
of O(N.F ), where F is the average number descriptor dis-
tributions in a video sequence. The main computational bur-
den is in fact the computation of K [10], where each entry
requires a nearest neighbour search.

The benefits of processing videos, as opposed to indi-
vidual treatment of each frames, is obvious by observing
the size of K. M is the total number of features from the
video sequences of the positive class in consideration (i.e.
the c-th class). By straightforwardly applying [10] on the
video frames, since each detected keypoint (in fact, descrip-
tor vector) counts as a feature, M can be a massive number:
For our database (see §5), M can reach 100,000! In con-
strast, by identifying keypoint overlaps (as in §2), M can be
reduced to a much more manageable value of about 12,000.

Of equal importance is the value of N , which is the to-
tal number of “samples” of places in the database. Using
our framework, each video sequence is a sample (hence N
< 200 for our database), whereas by directly applying [10],
every frame in the video sequences is a sample, and N can
reach up to 5000! Hence, by drastically lowering M and
N we can reduce the effort required to construct K. Since
it is also more feasible to wholly load a small K into main
memory, I/O overhead arising from fetching elements of K
is non-existent. These factors contribute towards a much
faster training phase of the AdaBoost algorithm (more de-
tails in §5). In fact, without applying our methods in §2
and §3, training AdaBoost classifiers on a video database of
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Figure 4. (a) Scenario 1 depicts the size of matrix K when applying the AdaBoost algorithm [10] by treating frames extracted from video
sequences as individual images. Scenario 2 illustrates what happens to matrix K when we apply the proposed video processing method.
(b) How kd-trees are scaled with Gaussian distributions of diagonal covariances.

modest size (≈10 video sequences) is barely feasible. Refer
to Fig. 4(a) for an illustration of the idea.

3.4. Fast nearest distribution search with PDS

Fast nearest neighbour searches can further speed up the
computation of K. Unfortunately since the KLD is not a
proper metric, common methods like kd-tree structures can-
not be applied. We propose a novel fast nearest neighbour
method for diagonal Gaussian distributions with the KLD.

Trivially, since 0.5 and d in Eq. (5) are common terms,
evaluating Eq. (4) is equivalent to evaluating

fn = argminfi
D̃(fi, em) , fi ∈ Fn , (7)

where D̃(fi, em) = D1(fi, em) + D2(fi, em), and

D1(fi, em) := log |Σm||Σi|−1,

D2(fi, em) := tr(Σ−1
m Σi) + (µm − µi)T Σ−1

m (µm − µi).
Let the covariance matrices be decomposed as such:

Σi = LiLT
i and Σ−1

m = LmLT
m . (8)

Since Σi and Σm are diagonal, Li and Lm are diagonal as
well. We can compute D1 and D2 as the following:

D1(fi, em) := log |Σm| − log |Σi| , (9)

D2(fi, em) := ‖M(p − q)‖2
, (10)

where p := [ µm 0 ]T , q := [ µi diag(Li) ]T and

M :=
[

LT
m 0
0 LT

m

]
. (11)

Finally, by observing that

D2(fi, em) =
2d∑

j=1

M2
jj(pj − qj)2 , (12)

we can implement a Partial Distance Search (PDS) [1] to
find the solution of Eq. (4) in a shorter duration than an
exhaustive nearest neighbour search. Note that since Σm is
positive definite, Mjj > 0 for all j.

4. Performing Place Recognition

Given a query image I, a set of classifiers Hc(I) with
c = 1, · · · , C are evaluated, where C is the total number of
distinct classes. The image I is assigned the class label of
which the Hc(I) response is highest, subject to it surmount-
ing a pre-defined threshold. This section explores how to
speed up recognition (§4.1), and how to perform geometric
validation on the recognition results (§4.2).

4.1. Faster recognition with scaled kd-trees

Evaluating Hc(I) involves performing T nearest neigh-
bour operations, one for each weak classifier hc

t(I), as de-
fined in Eq. (2). Effort towards increasing recognition speed
should begin with speeding up nearest neighbour searches.
We propose a method adapted from [12]. Basically for each
Hc we have two sets of features, descriptor distributions
ec

t = {µc
t ,Σ

c
t} from Hc with t = 1, . . . , T , and descrip-

tor vectors vj from the query image with j = 1, . . . , J .
Solving Eq. (2) is based on the Mahalanobis distance de-
fined in Eq. (6). To this end we build a kd-tree structure
on the query image descriptors vj . Each ec

t is then used
to “query” the structure to find min d(ec

t ,vj). Since ec
t is

in fact a Gaussian distribution, we can re-scale the original
Euclidean space in which the kd-tree resides according to
Σc

t followed by querying the tree with µc
t . This almost al-

ways results in a faster operation than an exhaustive search.
Refer to Fig. 4(b) for an illustration of the idea.

More formally, since we can decompose (Σc
t)

−1 =
Lc

t(L
c
t)

T , we can compute Eq. (6) as

d(ec
t ,vj) = ‖(Lc

t)
T (vj − µc

t)‖2 . (13)

Lc
t is diagonal as a result of Σc

t being diagonal, hence it is
clear that the difference (vj −µc

t) is scaled at every dimen-
sion by a value at the diagonal of Lc

t at the corresponding
dimension. Since kd-trees partition along the standard ba-
sis of the Euclidean space, and each node contains the pivot



value for partitioning a dimension, we can re-scale the pivot
value of each node with the corresponding scale factor from
the diagonal of Lc

t while descending a tree with µc
t . Note

that each query image requires building a kd-tree, but the
computational cost required is practically negligeable.

Secondly, our goal is not exactly in finding the nearest
neighbour of ec

t among the vj’s. We are only interested
about if at least one near enough neighbour (i.e. d(ec

t ,vj)
is below θc

t ) exist to decide the output of hc
t(I). Hence the

scaled kd-tree search can be terminated prematurely if the
distance of current nearest neighbour with ec

t is below θc
t .

4.2. Geometric validation

For descriptor distributions ec
t selected for a classifier

Hc in the boosting process, based on their relative positions
computed during the video processing step in §2.3, a near-
est neighbour index Wc ∈ R

T×T is built to represent their
geometric configuration. The i-th row of the index contains

Wc(i) = [ W c
i,1 , W c

i,2 , . . . , W c
i,T ] , (14)

where each W c
i,t ∈ [ 1 T ] indicates the index of the neigh-

bours of the i-th descriptor distribution arranged in decreas-
ing proximity, i.e. W c

i,1 = i. Also if b > a, the W c
i,a-th

descriptor distribution is closer in terms of spatial position
to ec

i than the W c
i,b-th descriptor distribution.

When tested against the c-th class, the local features vj

of a query image will activate some of the descriptor distri-
butions (i.e. hc

t(I) = 1). The indices of the activated hc
t ’s,

which range from 1 to T , are retained and a nearest neigh-
bour index W̃c ∈ R

T̃×T̃ is built based on the spatial po-
sitions the vj’s which caused the activations. The value of
T̃ depends on how many hc

t ’s are activated. We then com-
pute the number of intersections between the corresponding
rows of Wc and W̃c as a measure of geometric consistency.

5. Experimental Results

The dataset. First, we describe the collection process of
our place video database. Places of interest (mainly build-
ings with noticeable facades) in our campus were captured
in video in the manner described in §1 and Fig. 1(b). The de-
vice used is an off-the-shelf consumer digital camera. In our
database, the length of the videos range from 1s to 10s de-
pending on the size of the place, while the framerate is kept
at 25 fps. Also depending on the physical size, 3 to 6 video
sequences were recorded for each place. In general larger
buildings require not only more videos, the sequences are
also lengthier. Fig. 5 illustrates the types of places we have
collected. We recorded 40 different places which amount to
about 21,000 image frames or 1.5GB of data. Videos of the
same place were assigned the same class label.

At each place, a separate testing set of still images (col-
lectively 1349 images) were also captured in an uncon-

Figure 5. The types of places in our video database. These images
were extracted from their respective video sequence.

strained manner on different days, from different viewing
positions and viewpoints. They are labeled accordingly to
the place identity. Note that our digital camera, like most
consumer models, captures video in a much lower reso-
lution (480×640) than still images. Artifacts from video
coding are also introduced in the video frames. Hence the
training and testing set differ in image quality. These factors
result in a much harder dataset than the ZuBuD [11]. The
pre-processing steps we applied include resizing the images
to 240×320 pixels and a colour to greyscale conversion.

Fast nearest neighbour searches. We first investigate the
performance of the fast nearest neighbour routines of KLD-
PDS (§3.4) and Scaled kd-trees (§4.1). Since they are con-
ceived primarily for place recognition (KLD-PDS for train-
ing, Scaled kd-trees for testing), we analyze them empiri-
cally only. More specifically, we directly examine their per-
formance during training and testing of a database of video
sequences for place recognition (see Setting 4 of the next
subsection). The time required by an exhaustive nearest
neighbour search is recorded for comparisons. The result-
ing times are then plotted against the problem size i.e. the
number of distributions/vectors among which to search for
the nearest neighbours. Fig. 6(a) illustrates the results.

The divergent curves in Fig. 6(a) indicate that both KLD-
PDS and Scaled kd-trees have better scaling characteris-
tics than exhaustive nearest neighbour searches. In terms
of search duration, KLD-PDS provided consistent time sav-
ings of about 30%, while Scaled kd-trees performed even
better with times savings in the range of 20% (problem size
≈ 200) to 50% (problem size ≈ 1000). Note that problem
sizes for the Scaled kd-tree experiments directly correspond
to the number of keypoints extracted in the testing images.

Place recognition experiments. Four experimental settings
were investigated. They are:

1. Directly apply [10] on the video sequences by treating
each video frame individually as single images.

2. Randomly sample a few frames from each video and
directly apply [10]. This is to simulate the recording
of a place from coarsely sampled viewpoints like in
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(b) Place recognition experiments: Comparison of
training times among 3 settings.
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Setting 1 : Baseline method
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(c) Place recognition experiments: Averaged clas-
sification accuracy of 4 settings from 24 subsets.

Figure 6. Experimental results.

Fig. 1(a). For fair comparisons, the number of frames
selected per class is the same as the number of video
sequences available per class. This is to ensure that
Settings 2, 3 and 4 have the same number of samples
per class. Recall that for [10], an image is a sample,
whereas for our method a video sequence represents a
sample (refer to §3.3 and Fig. 4(a)).

3. Apply the procedure in §2 but represent each track with
just the mean vector of its descriptors, as in [13]. Train
classifiers using [10] with the descriptor mean vector.

4. Process the video sequences according to §2 and train
classifiers with the method detailed in §3.

Setting 1 is the baseline against which our method, formu-
lated in Settings 3 and 4, should be compared. In particu-
lar, we would expect Settings 3 and 4 to require much less
training time than Setting 1 while achieving comparable ac-
curacy. Finally, Setting 2 represents the control experiment.

Evaluating Setting 1 on the full dataset is not even re-
motely possible on standard hardware. Therefore we divide
the dataset into smaller subsets and perform all four settings
on each subset. Akin to cross validation, we randomly par-
tition the 40 classes into 8 mutually disjoint subsets, each
with 5 classes. The testing set is partitioned accordingly.
This preprocessing is not only necessary from a feasibility
point of view, but it also reflects the concept of “location
priming” in MAR [5], where GPS information is used to
narrow down the search space in a particular query. In fact,
in a given vicinity there are usually < 10 places of interest.

Random partitioning was carried out 3 times, creating a
total of 24 subsets with 5 classes each. The value of T ,
i.e. the number of weak classifiers per class, was main-
tained at 500 for all methods and subsets. For each subset,
the effective number of images to process is the total num-
ber of frames from all video sequences in the subset. We
plot the training durations of Settings 1, 2 and 4 against this
value in Fig. 6(b) (Settings 3 and 4 have comparable training

duration). Setting 2 is naturally the fastest since it merely
samples a small number of images to train. Performing Set-
ting 1 is the most time consuming, with training durations
at least twice that of Setting 3, with some even surpassing
a day. Setting 3 can be evaluated comfortably within 2.5
hours. This represents a dramatic improvement of training
efficiency for the AdaBoost method. Note that the video
processing steps of §2 require negligeable time (in the order
of tens of minutes) relative to the overall training time.

We now examine the classification accuracy. The results
from all subsets are averaged and their Receiver Operating
Characteristic (ROC) curves are shown in Fig. 6(c). The
ROCs were obtained by varying the confidence threshold on
the output of Eq. (1). As expected, Setting 1 outperformed
Setting 2 since the latter has only a subset of the input data.
Hence we conclude that densely imaging a place is useful
for training better classifiers. Next, it turns out that both
Settings 3 and 4 significantly outperformed Setting 1. The
video processing steps, which were originally conceived for
feature reduction, are actually beneficial for classification
accuracy. This is maybe because the more consistent key-
points identified are more effective for classification.

Setting Training time True/False accept rate
1 11.1013 hrs 89.56 / 10.44 %
2 0.1504 hrs 86.95 / 13.05 %
3 0.9608 hrs 95.13 / 4.87 %
4 1.1780 hrs 95.76 / 4.24 %

4 + Geom. val. 1.1780 hrs 96.28 / 3.72 %
Table 1. Summary of place recognition experiment results. All
values are averaged from the 24 subsets. The true/false accept rates
correspond to the threshold of zero, i.e. no threshold is applied.

Also, Setting 4 slightly outperformed Setting 3, indicat-
ing that it is advantageous to use descriptor distributions
rather than averages. The extra memory and computational
requirements during classification are only minor as de-
scribed in §4.1. Using our implementation in Matlab, test-



ing an image requires on average 1.5 seconds, with the bot-
tleneck occuring at the keypoint (SIFT) extraction process.
This can be further improved by using smaller values for
T (we discovered that setting T = 100 does not substan-
tially reduce accuracy). Finally, we observe that the simple
geometric validation method introduced in §4.2 can further
improve the accuracy of place recognition, as shown by Set-
ting 4a in Fig. 6(c). Table 1 summarizes the results.

Towards Mobile Augmented Reality (MAR). We tested
the viability of our ideas for a practical MAR system. Place
recognition classifiers were trained for a particular location
in a city. In total six distinct places of interest were in-
cluded. We then capture a query video within the vicin-
ity of the location. Each frame (240 × 320) in the video
is subjected offline to the trained classifiers (≈ 1.5s/image
in Matlab). Images which have positive classification are
tagged with the respective identity of the place recognized.
The tag is attached to the image at the position which cor-
respondes to the median of the x and y coordinates of the
keypoints which activated the weak classifiers of the class
with positive output. Fig. 7 illustrates several frames of the
results. The places were robustly indentified under multi-
ple viewpoints, and the recognition speed demonstrates a
significant potential for practical application.

Office tower A

Office building A

 Office tower B
Office building B

Subway station

Shopping mall

Figure 7. Recognition results from an MAR system.

6. Conclusions

The experimental results support our idea that having
more visual information about a place contributes towards
constructing more robust and accurate place recognition.
Hence we advocate using dense video recordings of facades
of places, instead of just several images from a few view-
points, to train classifiers for place recognition. The results
also confirm that our proposed solution for training classi-
fiers from the video sequences is much more efficient than
a straightforward application of the AdaBoost method for
generic object recognition [10] on the video frames. In fact,
the resulting classifiers are also more accurate.

We plan to implement the recognition algorithm in §4 on
a mobile device to allow in situ testing to more comprehen-
sively examine of the performance of the trained classifiers.
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